Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 15: 1377713, 2024.
Article in English | MEDLINE | ID: mdl-38638896

ABSTRACT

Sti1/Hop, a stress-induced co-chaperone protein, serves as a crucial link between Hsp70 and Hsp90 during cellular stress responses. Despite its importance in stress defense mechanisms, the biological role of Sti1 in Verticillium dahliae, a destructive fungal pathogen, remains largely unexplored. This study focused on identifying and characterizing Sti1 homologues in V. dahliae by comparing them to those found in Saccharomyces cerevisiae. The results indicated that the VdSti1-deficient mutant displayed increased sensitivity to drugs targeting the ergosterol synthesis pathway, leading to a notable inhibition of ergosterol biosynthesis. Moreover, the mutant exhibited reduced production of microsclerotia and melanin, accompanied by decreased expression of microsclerotia and melanin-related genes VDH1, Vayg1, and VaflM. Additionally, the mutant's conidia showed more severe damage under heat shock conditions and displayed growth defects under various stressors such as temperature, SDS, and CR stress, as well as increased sensitivity to H2O2, while osmotic stress did not impact its growth. Importantly, the VdSti1-deficient mutant demonstrated significantly diminished pathogenicity compared to the wild-type strain. This study sheds light on the functional conservation and divergence of Sti1 homologues in fungal biology and underscores the critical role of VdSti1 in microsclerotia development, stress response, and pathogenicity of V. dahliae.

2.
Nat Prod Res ; : 1-7, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38629157

ABSTRACT

Icariin is the most bioactive ingredient of Epimedium L. and a quality marker of Herba Epimedii. Conventional methods for production of Icariin are known to be inefficient, resulting in low yields and significant environmental pollution. This study aimed to develop a sustainable and effective biphasic enzymatic hydrolysis system for the efficient conversion of epimedin C to icariin. The biphasic system was created using butyl acetate and phosphate buffer (pH 4.5) at a ratio of 3:1 (V/V) along with α-L-rhamnosidase/epimedin C (2 U/1 mg) at 50 °C for 12 h. Consequently, 98.21% of epimedin C was hydrolysed to icariin, with 95.62% of the product being transferred to the organic phase. Even after four cycles of use, the conversion ratio remained high at 75.28%. Furthermore, this novel strategy was also used for the conversion of Epimedium brevicornu Maxim. extracts. The biphasic system represents a sustainable and effective method for icariin production, offering potential benefits for industrial applications.

3.
Molecules ; 29(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38675693

ABSTRACT

Further assessment of ultraviolet C light-emitting diode (UVC-LED) irradiation for influencing shiitake mushrooms' (Lentinus edodes) volatile and sensory properties is needed. In this study, a comparison of UVC-LED irradiation treatment on the flavor profiles in various parts of shiitake mushrooms was conducted using gas chromatography-ion mobility spectrometry (GC-IMS) and sensory analysis. Sixty-three volatile compounds were identified in shiitake mushrooms. The fresh shiitake mushrooms were characterized by the highest values of raw mushroom odors. After UVC-LED treatment, the content of C8 alcohols decreased, especially that of 1-octen-3-ol, while the content of aldehydes increased, especially the content of nonanal and decanal. The score of fatty and green odors was enhanced. For fresh samples, the mushroom odors decreased and the mushroom-like odors weakened more sharply when treated in ethanol suspension than when treated with direct irradiation. The fruit odors were enhanced using direct UVC-LED irradiation for fresh mushroom samples and the onion flavor decreased. As for shiitake mushroom powder in ethanol suspension treated with UVC-LED, the sweaty and almond odor scores decreased and the vitamin D2 content in mushroom caps and stems reached 668.79 µg/g (dw) and 399.45 µg/g (dw), respectively. The results obtained from this study demonstrate that UVC-LED treatment produced rich-flavored, quality mushroom products.


Subject(s)
Odorants , Shiitake Mushrooms , Ultraviolet Rays , Volatile Organic Compounds , Shiitake Mushrooms/chemistry , Volatile Organic Compounds/analysis , Odorants/analysis , Ion Mobility Spectrometry/methods , Gas Chromatography-Mass Spectrometry/methods
4.
Mol Plant Pathol ; 24(10): 1238-1255, 2023 10.
Article in English | MEDLINE | ID: mdl-37401912

ABSTRACT

Glycoside hydrolase (GH) family members act as virulence factors and regulate plant immune responses during pathogen infection. Here, we characterized the GH28 family member endopolygalacturonase VdEPG1 in Verticillium dahliae. VdEPG1 acts as a virulence factor during V. dahliae infection. The expression level of VdEPG1 was greatly increased in V. dahliae inoculated on cotton roots. VdEPG1 suppressed VdNLP1-mediated cell death by modulating pathogenesis-related genes in Nicotiana benthamiana. Knocking out VdEPG1 led to a significant decrease in the pathogenicity of V. dahliae in cotton. The deletion strains were more susceptible to osmotic stress and the ability of V. dahliae to utilize carbon sources was deficient. In addition, the deletion strains lost the ability to penetrate cellophane membrane, with mycelia showing a disordered arrangement on the membrane, and spore development was affected. A jasmonic acid (JA) pathway-related gene, GhOPR9, was identified as interacting with VdEPG1 in the yeast two-hybrid system. The interaction was further confirmed by bimolecular fluorescence complementation and luciferase complementation imaging assays in N. benthamiana leaves. GhOPR9 plays a positive role in the resistance of cotton to V. dahliae by regulating JA biosynthesis. These results indicate that VdEPG1 may be able to regulate host immune responses as a virulence factor through modulating the GhOPR9-mediated JA biosynthesis.


Subject(s)
Ascomycota , Verticillium , Virulence Factors , Glycoside Hydrolases/genetics , Gossypium/genetics , Plant Diseases , Disease Resistance/genetics , Gene Expression Regulation, Plant
5.
Environ Pollut ; 333: 122058, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37330187

ABSTRACT

Fludioxonil (FL) and metalaxyl-M·fludioxonil·azoxystrobin (MFA) are conventional seed coating agents for controlling cotton seedling diseases. However, their effects on seed endophytic and rhizosphere microecology are still poorly understood. This study aimed to assess the effects of FL and MFA on cotton seed endophytes, rhizosphere soil enzymatic activities, microbiome and metabolites. Both seed coating agents significantly changed seed endophytic bacterial and fungal communities. Growing coated seeds in the soils originating from the Alar (AL) and Shihezi (SH) region inhibited soil catalase activity and decreased both bacterial and fungal biomass. Seed coating agents increased rhizosphere bacterial alpha diversity for the first 21 days but decreased fungal alpha diversity after day 21 in the AL soil. Seed coating reduced the abundance of a number of beneficial microorganisms but enriched some potential pollutant-degrading microorganisms. Seed coating agents may have affected the complexity of the co-occurrence network of the microbiome in the AL soil, reducing connectivity, opposite to what was observed in the SH soil. MFA had more pronounced effects on soil metabolic activities than FL. Furthermore, there were strong links between soil microbial communities, metabolites and enzymatic activities. These findings provide valuable information for future research and development on application of seed coatings for disease management.


Subject(s)
Microbiota , Soil Microbiology , Rhizosphere , Bacteria , Soil , Metabolomics , Seeds
6.
Plant J ; 114(6): 1405-1424, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36948889

ABSTRACT

Protein lysine acetylation is an important post-translational modification mechanism involved in cellular regulation in eukaryotes. Calmodulin (CaM) is a ubiquitous Ca2+ sensor in eukaryotes and is crucial for plant immunity, but it is so far unclear whether acetylation is involved in CaM-mediated plant immunity. Here, we found that GhCaM7 is acetylated upon Verticillium dahliae (V. dahliae) infection and a positive regulator of V. dahliae resistance. Overexpressing GhCaM7 in cotton and Arabidopsis enhances V. dahliae resistance and knocking-down GhCaM7 makes cotton more susceptible to V. dahliae. Transgenic Arabidopsis plants overexpressing GhCaM7 with mutation at the acetylation site are more susceptible to V. dahliae than transgenics overexpressing the wild-type GhCaM7, implying the importance of the acetylated GhCaM7 in response to V. dahliae infection. Yeast two-hybrid, bimolecular fluorescent complementation, luciferase complementation imaging, and coimmunoprecipitation assays demonstrated interaction between GhCaM7 and an osmotin protein GhOSM34 that was shown to have a positive role in V. dahliae resistance. GhCaM7 and GhOSM34 are co-localized in the cell membrane. Upon V. dahliae infection, the Ca2+ content reduces almost instantly in plants with downregulated GhCaM7 or GhOSM34. Down regulating GhOSM34 enhances accumulation of Na+ and increases cell osmotic pressure. Comparative transcriptomic analyses between cotton plants with an increased or reduced expression level of GhCaM7 and wild-type plants indicate the involvement of jasmonic acid signaling pathways and reactive oxygen species in GhCaM7-enabled disease resistance. Together, these results demonstrate the involvement of CaM protein in the interaction between cotton and V. dahliae, and more importantly, the involvement of the acetylated CaM in the interaction.


Subject(s)
Arabidopsis , Ascomycota , Verticillium , Gossypium/genetics , Gossypium/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Proteins/metabolism , Acetylation , Verticillium/physiology , Disease Resistance/genetics , Ascomycota/genetics , Calmodulin/genetics , Calmodulin/metabolism , Protein Processing, Post-Translational , Plants, Genetically Modified/metabolism , Plant Diseases , Gene Expression Regulation, Plant
7.
Front Microbiol ; 14: 1125564, 2023.
Article in English | MEDLINE | ID: mdl-36778850

ABSTRACT

Introduction: Long-term continuous cropping may result in the outbreak and proliferation of soil-borne diseases, as well as reduction in annual crop production. Overcoming the obstacles of continuous cropping is critical for the long-term growth of modern agriculture. Soil microbes are essential for plant health, but the consequences of continuous cropping on soil microbiome are still poorly understood. Methods: This study analyzed changes in soil bacterial community composition of Aksu (AKS) and Shihezi (SHZ) in Xinjiang Province during 1-20 years of continuous cropping by 16S amplicon sequencing. The results showed that the incidence of cotton Verticillium wilt rose with the number of cropping years. The bacterial alpha diversity in the AKS soil grew as the number of continuous cropping years increased, however it declined in the SHZ soil. Results: The results of beta diversity analysis showed that there were significant differences in soil bacterial communities between different continuous cropping years and between different soils. The results of community composition changes at the level of main phyla and genus showed that the relative abundance of Actinobacteria, Bacteroidetes and Streptomyces decreased with the increase of continuous cropping years in the AKS and the SHZ soils. In addition, Actinobacteria, Propionibacteriales, and Nocardioidaceae were significantly enriched during the early stages of continuous cropping. Network analysis showed that long-term (≥8 years) continuous cropping interfered with the complexity of soil bacterial co-occurrence networks and reduced collaboration between OTUs. Discussion: These findings suggested that continuous cropping and soil origin jointly affected the diversity and structural of bacterial communities, and the loss of Nocardioidaceae and Streptomyces in Actinobacteria might be one of the reasons of continuous cropping obstacles.

8.
Plant Sci ; 328: 111582, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36632889

ABSTRACT

The soil-borne fungus Verticillium dahliae causes Verticillium wilt (VW), one of the most devastating diseases of cotton. In a previous study showed that GhOPR9 played a positive role in resistance of cotton to VW through the regulation of the Jasmonic acid (JA) pathway. Furtherly, we also found that GhOPR9 interacted with a sucrose galactosyltransferase GhRFS6. Raffinose synthase (RFS) plays a key role in plant innate immunity, including the abiotic stress of drought, darkness. However, there were few reports on the effects of RFS on biotic stress. In this study, we verified the function of GhRFS6 to VW. The expression analysis showed that the GhRFS6 may be regulated by various stresses, and it was upregulated under Vd076 and Vd991 pressures. Inhibition of GhRFS6 expression, hydrogen peroxide (H2O2) content, lignin content, cell wall thickness and a series of defense responses were decreased, and the resistance of cotton to V. dahliae was decreased. In addition, this study showed that GhRFS6 has glycosyltransferase activity and can participate in the regulation of α-galactosidase activity and raffinose and inositol synthesis. And that galactose was accumulated in cotton roots after GhRFS6 silencing, which is beneficial for the colonization and growth of V. dahliae. Furthermore, overexpression of GhRFS6 in Arabidopsis thaliana enhanced plant resistance to V. dahliae. In GUS staining, the promoter expression position of GhRFS6 was also altered after V. dahliae infection. Meanwhile, GhRFS6 has also been shown to resist VW through the regulation of the JA pathway. These results suggest that GhRFS6 is a potential molecular target for improving cotton resistance to VW.


Subject(s)
Arabidopsis , Verticillium , Verticillium/physiology , Hydrogen Peroxide/metabolism , Plant Diseases/microbiology , Plant Immunity , Gossypium/genetics , Gossypium/metabolism , Galactosyltransferases/genetics , Galactosyltransferases/metabolism , Arabidopsis/metabolism , Disease Resistance/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
9.
Int J Mol Sci ; 24(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36674996

ABSTRACT

Verticillium wilt is a kind of plant vascular disease caused by the soilborne fungus Verticillium dahliae, which severely limits cotton production. Our previous studies showed that the endophytic fungus Gibellulopsis nigrescens CEF08111 can effectively control Verticillium wilt and induce a defense response in cotton plants. However, the comprehensive molecular mechanism governing this response is not yet clear. To study the signaling mechanism induced by strain CEF08111, the transcriptome of cotton seedlings pretreated with CEF08111 was sequenced. The results revealed 249, 3559 and 33 differentially expressed genes (DEGs) at 3, 12 and 48 h post inoculation with CEF08111, respectively. At 12 h post inoculation with CEF08111, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the DEGs were enriched mainly in the plant−pathogen interaction, mitogen-activated protein kinase (MAPK) signaling pathway-plant, and plant hormone signal transduction pathways. Gene ontology (GO) analysis revealed that these DEGs were enriched mainly in the following terms: response to external stimulus, systemic acquired resistance, kinase activity, phosphotransferase activity, xyloglucan: xyloglucosyl transferase activity, xyloglucan metabolic process, cell wall polysaccharide metabolic process and hemicellulose metabolic process. Moreover, many genes, such as calcium-dependent protein kinase (CDPK), flagellin-sensing 2 (FLS2), resistance to Pseudomonas syringae pv. maculicola 1(RPM1) and myelocytomatosis protein 2 (MYC2), that regulate crucial points in defense-related pathways were identified and may contribute to V. dahliae resistance in cotton. Seven DEGs of the pathway phenylpropanoid biosynthesis were identified by weighted gene co-expression network analysis (WGCNA), and these genes are related to lignin synthesis. The above genes were compared and analyzed, a total of 710 candidate genes that may be related to the resistance of cotton to Verticillium wilt were identified. These results provide a basis for understanding the molecular mechanism by which the biocontrol fungus CEF08111 increases the resistance of cotton to Verticillium wilt.


Subject(s)
Gossypium , Verticillium , Gossypium/genetics , Gossypium/metabolism , Gene Expression Profiling , Defense Mechanisms , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Gene Expression Regulation, Plant , Plant Proteins/genetics
10.
Curr Genet ; 69(1): 25-40, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36416932

ABSTRACT

The ergosterol biosynthesis pathway plays an important role in model pathogenic bacteria Saccharomyces cerevisiae, but little is known about the biosynthesis of ergosterol in the pathogenic fungus Verticillium dahliae. In this study, we identified the VdERG2 gene encoding sterol C-8 isomerase from V. dahliae and investigated its function in virulence by generating gene deletion mutants (ΔVdERG2) and complemented mutants (C-ΔVdERG2). Knockout of VdERG2 reduced ergosterol content. The conidial germination rate and conidial yield of ΔVdERG2 significantly decreased and abnormal conidia were produced. In spite of VdERG2 did not affect the utilization of carbon sources by V. dahliae, but the melanin production of ΔVdERG2 was decreased in cellulose and pectin were used as the sole carbon sources. Furthermore, the ΔVdERG2 mutants produced less microsclerotia and melanin with a significant decrease in the expression of microsclerotia and melanin-related genes VaflM, Vayg1, VDH1, VdLAC, VdSCD and VT4HR. In addition, mutants ΔVdERG2 were very sensitive to congo red (CR), sodium dodecyl sulfate (SDS) and hydrogen peroxide (H2O2) stresses, indicating that VdERG2 was involved in the cell wall and oxidative stress response. The absence of VdERG2 weakened the penetration ability of mycelium on cellophane and affected the growth of mycelium. Although ΔVdERG2 could infect cotton, its pathogenicity was significantly impaired. These phenotypic defects in ΔVdERG2 could be complemented by the reintroduction of a full-length VdERG2 gene. In summary, as a single conservative secretory protein, VdERG2 played a crucial role in ergosterol biosynthesis, nutritional differentiation and virulence in V. dahliae.


Subject(s)
Ascomycota , Verticillium , Virulence/genetics , Melanins , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Ascomycota/metabolism , Plant Diseases/microbiology
11.
Microbiol Spectr ; 11(1): e0351522, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36475739

ABSTRACT

Verticillium dahliae Kleb is a typical soilborne pathogen that can cause vascular wilt disease on more than 400 plants. Functional analysis of genes related to the growth and virulence is crucial to revealing the molecular mechanism of the pathogenicity of V. dahliae. Glycosidase hydrolases can hydrolyze the glycosidic bond, and some can cause host plant immune response to V. dahliae. Here, we reported a functional validation of VdGAL4 as an α-galactosidase that belongs to glycoside hydrolase family 27. VdGAL4 could cause plant cell death, and its signal peptide plays an important role in cellular immune response. VdGAL4-triggered cell death depends on BAK1 and SOBIR1 in Nicotiana benthamiana. In V. dahliae, the function of VdGAL4 in mycelial growth, conidia, microsclerotium, and pathogenicity was studied by constructing VdGAL4 deletion and complementation mutants. Results showed that the deletion of VdGAL4 reduced the conidial yield and conidial germination rate of V. dahliae and changed the microscopic morphology of conidia; the mycelia were arranged more disorderly and were unable to produce microsclerotium. The VdGAL4 deletion mutants exhibited reduced utilization of different carbon sources, such as raffinose and sucrose. The VdGAL4 deletion mutants were also more sensitive to abiotic stress agents of SDS, sorbitol, low-temperature stress of 16°C, and high-temperature stress of 45°C. In addition, the VdGAL4 deletion mutants lost the ability to penetrate cellophane and its mycelium were disorderly arranged. Remarkably, VdGAL4 deletion mutants exhibited reduced pathogenicity of V. dahliae. These results showed that VdGAL4 played a critical role in the pathogenicity of V. dahliae by regulating mycelial growth, conidial morphology, and the formation of microsclerotium. IMPORTANCE This study showed that α-galactosidase VdGAL4 of V. dahliae could activate plant immune response and plays an important role in conidial morphology and yield, formation of microsclerotia, and mycelial penetration. VdGAL4 deletion mutants significantly reduced the pathogenicity of V. dahliae. These findings deepened the understanding of pathogenic virulence factors and how the mechanism of pathogenic fungi infected the host, which may help to seek new strategies for effective control of plant diseases caused by pathogenic fungi.


Subject(s)
Ascomycota , Verticillium , Virulence/genetics , alpha-Galactosidase/metabolism , Verticillium/genetics , Virulence Factors/genetics , Ascomycota/metabolism , Plants/metabolism , Plant Diseases/microbiology , Fungal Proteins/metabolism
12.
Front Microbiol ; 13: 1021064, 2022.
Article in English | MEDLINE | ID: mdl-36204634

ABSTRACT

Rhizosphere microbial communities are recognized as crucial products of intimate interactions between plant and soil, playing important roles in plant growth and health. Enhancing the understanding of this process is a promising way to promote the next green revolution by applying the multifunctional benefits coming with rhizosphere microbiomes. In this study, we propagated eight cotton genotypes (four upland cotton cultivars and four sea-land cotton cultivars) with varying levels of resistance to Verticillium dahliae in three distinct soil types. Amplicon sequencing was applied to profile both bacterial and fungal communities in the rhizosphere of cotton. The results revealed that soil origin was the primary factor causing divergence in rhizosphere microbial community, with plant genotype playing a secondary role. The Shannon and Simpson indices revealed no significant differences in the rhizosphere microbial communities of Gossypium barbadense and G. hirsutum. Soil origin accounted for 34.0 and 59.05% of the total variability in the PCA of the rhizosphere bacterial and fungal communities, respectively, while plant genotypes within species only accounted for 1.1 to 6.6% of the total variability among microbial population. Similar results were observed in the Bray-Curtis indices. Interestingly, the relative abundance of Acidobacteria phylum in G. barbadense was greater in comparison with that of G. hirsutum. These findings suggested that soil origin and cotton genotype modulated microbiome assembly with soil predominantly shaping rhizosphere microbiome assembly, while host genotype slightly tuned this recruitment process by changing the abundance of specific microbial consortia.

13.
Microbiol Spectr ; 10(6): e0247722, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36222688

ABSTRACT

Verticillium dahliae is a soilborne fungus that causes destructive vascular wilt diseases in a wide range of plant hosts. In this study, we identified two M35 family metalloproteinases: VdM35-1 and VdASPF2, and investigated their function in vitro and in vivo. The results showed that VdM35-1 and VdASPF2 were located in the cell membrane, as secreted proteins depended on signal peptide, and two histidine residues (H) induced cell death and activated plant immune response. VdM35-1 depended on membrane receptor proteins NbBAK1 and NbSOBIR1 in the process of inducing cell death, while VdASPF2 did not depend on them. The deletion of VdM35-1 and VdASPF2 led to the decrease of sporulation and the slow shortening of mycelial branch growth, and the spore morphology of VdM35-1-deficient strain became malformed. In addition, ΔVdM35-1 and ΔVdASPF2 showed more sensitive to osmotic stress, SDS, Congo red (CR), and high temperature. In terms of the utilization of carbon sources, the knockout mutants exhibited decreased utilization of carbon sources, and the growth rates on the medium containing sucrose, starch, and pectin were lower than the wild type strain, with significantly limited growth, especially on galactose-containing medium. Furthermore, ΔVdM35-1 and ΔVdASPF2 showed a significant reduction in pathogenicity. Collectively, these results suggested that VdM35-1 and VdASPF2 were important multifunction factors in the pathogenicity of V. dahliae and relative to stress adaptation and activated plant immune response. IMPORTANCE Verticillium wilt, caused by the notorious fungal pathogen V. dahliae, is one of the main limiting factors for agricultural production. Metalloproteases played an important role in the pathogenic mechanism of pathogens. Our research found that M35 family metalloproteases VdM35-1 and VdASPF2 played an important role in the development, adaptability, and pathogenicity of V. dahliae, providing a new perspective for further understanding the molecular mechanism of virulence of fungal pathogens.


Subject(s)
Ascomycota , Verticillium , Virulence , Verticillium/genetics , Ascomycota/metabolism , Plants/metabolism , Carbon/metabolism , Plant Diseases/microbiology , Fungal Proteins/metabolism
14.
PLoS One ; 17(8): e0271408, 2022.
Article in English | MEDLINE | ID: mdl-36006900

ABSTRACT

The green synthesis of silver nanoparticles (AgNPs) using a water extract of Ginger (Zingiber officinale) root by microwave irradiation and its antibacterial activities have been reported. However, AgNPs prepared from different parts of ginger root water or ethanol extract by ultrasound synthesis and their antioxidant activity and whether the biogenic could be used to catalyze the reduction of hazardous dye are unknown. This study concentrated on the facile green synthesis of AgNPs prepared from different parts (unpeeled ginger, peeled ginger, and ginger peel) of ginger root water or ethanol extract by the ultrasound-assisted method. We studied their antioxidant activity and catalytic degradation of hazardous dye Direct Orange 26 (DO26) and Direct Blue 15 (DB15). The surface plasmon resonance (SPR) peak of AgNPs was at 428-443 nm. The biogenic AgNPs were approximately 2 nm in size with a regular spherical shape identified from TEM analysis. The ethanol extracts of dried unpeeled ginger and peeled ginger, fresh peeled ginger and ginger peel. The Z. officinale AgNPs synthesized by dried unpeeled ginger ethanol extract showed the best antioxidant activity. Their scavenging activities were significantly better than BHT (p <0.05). The different parts of ginger extracts showed no catalytic degradation activities of DB15 and DO26. Still, the synthesized Z. officinale AgNPs exhibited good catalytic degradation activities, while their ability to catalytic degradation to DB15 was better than DO26. In the additive ratio of 3 mL DB15, 0.1 mL NaBH4 and 0.1 mL AgNPs, the degradation rates of DB15 (or DO26) at 15 min, 30 min and 60 min were only 1.8% (0.9%), 2.8% (1.4%) and 3.5% (1.6%) in the absence of AgNPs. When adding Z. officinale AgNPs prepared from dried ginger peel ethanol extract or fresh ginger peel water extract, the degradation rates of DB15 sharply increased to 97% and 93% after 30 min, respectively. In conclusion, ginger extract has good antioxidant properties. Z. officinale AgNPs biosynthesis from ginger extract exhibit excellent catalytic degradation activities, especially for the ginger peel extract. They have application value in the treatment of textile effluents and provide a new idea and method for the comprehensive development and utilization of ginger resources.


Subject(s)
Citrus sinensis , Metal Nanoparticles , Zingiber officinale , Anti-Bacterial Agents , Antioxidants , Azo Compounds , Ethanol , Green Chemistry Technology , Plant Extracts , Silver , Water
15.
Microbiol Spectr ; 10(2): e0247821, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35377232

ABSTRACT

Verticillium dahliae could cause destructive vascular wilt disease on hundreds of plant species around the world, including cotton. In this study, we characterized the function of a hydrophobin gene VdHP1 in pathogen development and pathogenicity. Results showed that VdHP1 could induce cell death and activate plant immune responses. The VdHP1 deletion mutants (ΔVdHP1) and the complement mutants (C-ΔVdHP1) were obtained by the homologous recombination method. The VdHP1 deletion mutants exhibited increased hydrophilicity, inhibited microsclerotial formation, and reduced spore smoothness. In addition, the deletion mutants were more sensitive to NaCl, while relatively insensitive to KCl and sorbitol. Mutants also had greater resistance to Congo red, UV radiation, and high temperature, which suggested that ΔVdHP1 strains have stronger resistance to abiotic stress in general. Different carbon source assays showed that the utilization ability of skim milk, cellulose, and starch was greatly enhanced in ΔVdHP1, compared with that of WT and complemented strains. Furthermore, VdHP1 did not affect mycelium penetration on cellophane but contributed to mycelium growth on surface of the living plant cells. The pathogenicity test found that the crude toxin content, colonization, and dispersal of ΔVdHP1 was significantly increased compared with the WT and complementary strains. In addition, cotton seedlings showed more severe wilting symptoms after inoculation with ΔVdHP1 strains. These results suggested that the hydrophobin VdHP1 negatively regulated the virulence of V. dahliae, and played an important role in development, adaptability, and pathogenicity in V. dahliae, which maybe provide a new viewpoint to further understand the molecular mechanisms of pathogen virulence. IMPORTANCE Verticillium dahliae is a soilborne fungal pathogen that causes a destructive vascular disease on a large number of plant hosts, resulting in great threat to agricultural production. In this study, it was illustrated that the hydrophobin VdHP1 could induce cell death and activate plant immune responses. VdHP1 affected the hydrophobicity of V. dahliae, and negatively regulated the strains resistant to stress, and the utilization ability of different carbon sources. In addition, VdHP1 did not affect mycelium penetration on cellophane but contributed to mycelium growth on surface of the living plant cells. The VdHP1 gene negatively regulated the total virulence, colonization, and dispersal of V. dahliae, with enhanced pathogenicity of mutant strains in this gene. These results suggested that the hydrophobin VdHP1 played an importance in development, adaptability, and pathogenicity in V. dahliae, and would provide a new viewpoint to further understand the molecular mechanisms of pathogen virulence.


Subject(s)
Verticillium , Acremonium , Carbon/metabolism , Cellophane/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hydrophobic and Hydrophilic Interactions , Plant Diseases/microbiology , Plants/metabolism , Verticillium/genetics
16.
Sci Adv ; 8(2): eabk1480, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35030028

ABSTRACT

Anomalous Nernst effect (ANE), converting a heat flow to transverse electric voltage, originates from the Berry phase of electronic wave function near the Fermi energy EF. Thus, the ANE provides a sensitive probe to detect a topological state that produces large Berry curvature. In addition, a magnet that exhibits a large ANE using low-cost and safe elements will be useful to develop a novel energy harvesting technology. Here, we report our observation of a high ANE exceeding 3 microvolts per kelvin above room temperature in the kagome ferromagnet Fe3Sn with the Curie temperature of 760 kelvin. Our theoretical analysis clarifies that a "nodal plane" produces a flat hexagonal frame with strongly enhanced Berry curvature, resulting in the large ANE. Our discovery of the large ANE in Fe3Sn opens the path for the previously unexplored functionality of flat degenerate electronic states and for developing flexible film thermopile and heat current sensors.

17.
Plant Signal Behav ; 17(1): 2024738, 2022 12 31.
Article in English | MEDLINE | ID: mdl-35034577

ABSTRACT

DEK is associated with DNA replication and break repair, mRNA splicing, and transcriptional regulation, which had been studied in humans and mammals. The function of DEK in plants was poorly understood. In this study, GhDEK2D was identified in Gossypium hirsutum by genome-wide and post-translational modifications. GhDEK2D had been phosphorylated, acetylated and ubiquitylated under Verticillium dahliae (Vd) challenge. The GhDEK2D-silenced cotton decreased resistance against Vd. In GhDEK2D-silenced cotton plants, the reactive oxygen species was activated, the callose, xylogen, hypersensitive reaction (HR) and expression levels of defense-related genes were reduced. Homozygous overexpressing-GhDEK2D transgenic Arabidopsis lines were more resistant to Verticillium wilt (Vw). We propose that GhDEK2D was a potential molecular target for improving resistance to Vw in cotton.


Subject(s)
Arabidopsis , Verticillium , Arabidopsis/genetics , Disease Resistance/genetics , Gene Expression Regulation, Plant/genetics , Gossypium/genetics , Gossypium/metabolism , Plant Diseases/genetics
18.
Int J Biol Macromol ; 195: 456-465, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34920061

ABSTRACT

Mitogen-activated protein kinases (MPKs) are important in regulating plant development and stress response. Rapid activation of MPKs in plants usually depends on its phosphorylated. In view of this situation, a phosphorylated GhNTF6 belonged to MPKs family was screened in cotton roots under Verticillium dahliae challenge by phosphoproteomics analysis. Expression of GhNTF6 in cotton plants was did not induce by V. dahliae infection, while, silencing GhNTF6 results to enhance cotton plants susceptibility to V. dahliae, overexpression - GhNTF6 enhance Arabidopsis plants survivability to V. dahliae. Moreover, the mutation of GhNTF6 at site Thr195 and Thy197 with the phosphorylation decreased the plant resistance to V. dahliae. Therefore, GhNTF6 phosphorylation is important in plants against V. dahliae. Further analysis demonstrated that GhNTF6 interacted with a V. dahliae endopolygalacturonase (VdEPG1) on the cell nucleus. We propose that GhNTF6 is a potential molecular target for improving resistance to Verticillium wilt in cotton.


Subject(s)
Ascomycota , Disease Resistance/genetics , Gossypium/genetics , Gossypium/microbiology , Mitogen-Activated Protein Kinases/genetics , Plant Proteins/genetics , Polygalacturonase/metabolism , Chromosome Mapping , Gene Expression Regulation, Plant , Gossypium/classification , Host-Pathogen Interactions , Mitogen-Activated Protein Kinases/chemistry , Mitogen-Activated Protein Kinases/metabolism , Phylogeny , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Binding , Signal Transduction
19.
Int J Mol Sci ; 22(23)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34884844

ABSTRACT

Verticillium wilt, mainly caused by a soil-inhabiting fungus Verticillium dahliae, can seriously reduce the yield and quality of cotton. The complex mechanism underlying cotton resistance to Verticillium wilt remains largely unknown. In plants, reactive oxygen species (ROS) mediated by Rbohs is one of the earliest responses of plants to biotic and abiotic stresses. In our previous study, we performed a time-course phospho-proteomic analysis of roots of resistant and susceptible cotton varieties in response to V. dahliae, and found early differentially expressed protein burst oxidase homolog protein D (GhRbohD). However, the role of GhRbohD-mediated ROS in cotton defense against V. dahliae needs further investigation. In this study, we analyzed the function of GhRbohD-mediated resistance of cotton against V. dahliae in vitro and in vivo. Bioinformatics analysis showed that GhRbohD possessed the conservative structural attributes of Rbohs family, 12 members of RbohD out of 57 Rbohs in cotton. The expression of GhRbohD was significantly upregulated after V. dahliae inoculation, peaking at 6 hpi, and the phosphorylation level was also increased. A VIGS test demonstrated that ROS production, NO, H2O2 and Ca2+ contents of GhRbohD-silenced cotton plants were significantly reduced, and lignin synthesis and callose accumulation were damaged, important reasons for the impairment of GhRbohD-silenced cotton's defense against V. dahliae. The expression levels of resistance-related genes were downregulated in GhRbohD-silenced cotton by qRT-PCR, mainly involving the lignin metabolism pathway and the jasmonic acid signaling pathway. However, overexpression of GhRbohD enhanced resistance of transgenic Arabidopsis to V. dahliae challenge. Furthermore, Y2H assays were applied to find that GhPBL9 and GhRPL12C may interact with GhRbohD. These results strongly support that GhRbohD activates ROS production to positively regulate the resistance of plants against V. dahliae.


Subject(s)
Ascomycota/physiology , Disease Resistance/genetics , Gossypium/metabolism , NADPH Oxidases/metabolism , Plant Proteins/metabolism , Calcium/metabolism , Gene Silencing , Gossypium/microbiology , NADPH Oxidases/classification , NADPH Oxidases/genetics , Phosphorylation , Phylogeny , Plant Diseases/microbiology , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Proteins/classification , Plant Proteins/genetics , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/microbiology , Reactive Oxygen Species/metabolism , Up-Regulation
20.
Front Nutr ; 8: 788929, 2021.
Article in English | MEDLINE | ID: mdl-34970579

ABSTRACT

Gastric cancer is one of the most common cancer and deadly disease worldwide. Despite substantial advances made in the treatment of gastric cancer, existing therapies still encounter bottlenecks. Chemotherapy, for instance, could lead to serious side effects, high drug resistance and treatment failure. Phytochemical-derived compounds from plants offer novel strategies as potent drug molecules in cancer therapy. Given the low toxicity and higher tolerance rate of naturally occurring compounds, the present study evaluated the effects of syringic acid on cytotoxicity, oxidative stress, mitochondrial membrane potential, apoptosis, and inflammatory responses in gastric cancer cell line (AGS). AGS cells were treated with various concentrations (5-40 µg/mL) of syringic acid for 24 h, after which cytotoxicity was analyzed. Reactive Oxygen Species (ROS), antioxidant enzyme activities, mitochondrial membrane potential (MMP, Δψ m), cell morphologies, the expression of apoptotic markers and protein expression patterns were also investigated. Results indicated that syringic acid-treated cells developed anti-cancer activities by losing MMP, cell viability, and enhancing intracellular ROS. Syringic acid selectively developed apoptosis in a dose-dependent manner via enhanced regulation of caspase-3, caspase-9 and Poly ADP-ribose Polymerase (PARP) whereas decreasing the expression levels of p53 and BCL-2. Syringic acid also lowered activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) whereas Thio Barbituric Acid Reactive Substances (TBARS) increased. Syringic acid suppressed gastric cancer cell proliferation, inflammation, and induced apoptosis by upregulating mTOR via AKT signaling pathway. The study suggests syringic acid may constitute a promising chemotherapeutic candidate for gastric cancer treatment. Our study is the first report on the anti-cancer effects of syringic acid against gastric cancer cells via apoptosis, inhibition of inflammation, and the suppression of the mTOR/AKT signaling pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...